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Cracking in brittle laminates from concentrated loads
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Abstract

A study is made of the crack resistance of multilaminates consisting of brittle layers interleaved with compliant
interlayers and bonded to compliant substrates. Specific attention is paid to flexure-generated radial cracks in the
undersurfaces of individual glass layers from concentrated loads applied at the top surfaces. A proposed condition for
acceptance of such multilayer systems is that radial cracking in the upper layers should not occur before analogous
radial cracking at the undersurface of an equivalent monolithic coating. Model multilayer systems constructed from
glass plates laminated with polycarbonate interlayers and glued onto a polycarbonate base are used to test this condition.
These systems enable in situ viewing of radial cracks through polished side surfaces. Critical loads to initiate such
radial cracks are measured for multilayers with selected numbers of layers and interlayer/glass thickness ratios. Simple,
approximate, semi-empirical closed-form relations are derived for the critical loads, and validated against predictions
from finite element computations. We demonstrate the general existence of optimum conditions for multilayer design
in terms of numbers of brittle layers, ratios of adhesive interlayer to brittle layer thickness, and modulus mismatch
ratios. Published by Elsevier Science Ltd on behalf of Acta Materialia Inc.
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1. Introduction

Studies have recently been made of bilayers con-
sisting of hard, brittle monolithic coating layers on
soft, tough substrates, using glass/polycarbonate as
a model system for in situ viewing of crack
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initiation and evolution in contact loading [1,2]. In
such structures the stiff outer layers absorb the bulk
of the externally applied loads and “protect” the
soft underlayers. The soft underlayers in turn pre-
vent the spread of any cracks into the interior. Most
dangerous are radial cracks that originate at the
coating undersurfaces, from flexure of the coating
on the compliant substrate. Radial cracks can occur
at relatively low loads, especially in thinner coat-
ings, and can extend over long lateral distances,
ultimately contributing to delamination and failure.
Explicit analytical relations for the critical loads
required to initiate radial cracks have been estab-
lished, in terms of basic material properties and



2614 H. Chai, B.R. Lawn / Acta Materialia 50 (2002) 2613–2625

coating thickness, using solutions for beams and
plates on soft foundations [1,3,4].

The question arises: can further benefit be real-
ized by replacing a monolith coating of thickness D
with a laminate of n brittle layers each of thickness
d=D/n, bonded together with soft adhesive inter-
layers of thickness h�d? In one extension of the
above glass/polycarbonate studies [5], replacement
of the single glass layer by a glass/sapphire bilayer
markedly reduced the susceptibility to radial frac-
ture in the outer glass, by transferring the stress to
the stiffer inner sapphire (although the sapphire
itself became susceptible to fracture). An important
functional advantage of multilayers is that any such
cracking may be contained within an individual
brittle layer, further confining the spread of dam-
age. This is the principle of damage tolerance.
However, brittle multilayer coatings consisting of
like stacked plates may be subject to premature
failure in thin upper members at relatively low
loads, owing to enhanced flexure of those layers
on the bonding adhesive [2]. The danger is that
radial cracking may occur at a much lower critical
load P1 in the undersurface of layer 1 than the cor-
responding critical load Pn in layer n, leading to
premature failure. For such a system to be accept-
able, it is necessary to ensure that P1/Pn�1.

Several practical applications may be cited as
motivating forces for the study of brittle multilay-
ers on soft substrates. Dental crowns [6,7] and total
hip replacements [8] are important biomechanical
examples. Engineering applications include glass–
polymer laminates for protective windows [9–13],
thermal barrier coatings [14], and hard disk drives
for computers [15]. Precedents for the kind of
multilayer systems under consideration here exist
in the materials engineering literature: laminar zir-
conia [16] and silicon nitride [17] composites;
ceramic/metal multilayers [18]; and carbon fiber
cross-ply composites [19]. All of these systems
show some form of distributed damage rather than
single brittle crack failure. However, little attention
has been paid to quantification of the critical loads
for first damage which, in many applications
(especially biomechanical), signals the end of use-
fulness of the structure [3].

In this paper we examine the response of model
multilayer systems to concentrated loads, follow-

ing the procedure previously used to study bilayers
[1,2]. Glass plates of fixed thicknesses are lami-
nated with polycarbonate sheet interlayers, all
bonded together with a thin layer of epoxy
adhesive onto a polycarbonate base. Such systems
allow for in situ viewing of radial crack evolution
in individual plates through polished side surfaces,
as well as from below. An added advantage of
glass as a model brittle material is the ability to
control the bulk material strength by abrading or
etching one or all of the undersurfaces, to facilitate
selective examination of radial cracking in any pre-
scribed layer. Critical loads to initiate radial cracks
in each such layer are measured for multilayers
with selected numbers of layers n and
interlayer/glass thickness ratios h/d. Analytical
relations for these critical loads using modified
forms of earlier bilayer relations are presented, and
validated against predictions from finite element
computations for selected hypothetical multilayer
systems. We demonstrate the existence of optimum
conditions for layer design in terms of numbers of
layers, ratios of adhesive interlayer to brittle layer
thickness, and modulus mismatch factors.

2. Radial crack patterns in multilayers

2.1. Statement of problem

Consider a laminate with n individual brittle cer-
amic layers of thickness d and modulus Ec, alter-
nating with thinner interlayers of thickness h (h�d)
and low modulus Ei (Ei �Ec), with the whole
bonded onto a comparatively thick substrate of low
modulus Es (Es�Ec), Fig. 1. Suppose the multi-
layer to be subjected to a concentrated force P by
a spherical indenter at its top surface; and let the
sphere radius r be sufficiently small that the contact
radius can be considered negligible relative to the
coating layer thickness, i.e. equivalent to a point
load (conservative design). Then, provided none of
the constituent layers undergoes inelastic defor-
mation, a linear relation exists between load and
stress at any point, enabling certain simplifications
in analysis. The potential advantage of the laminate
is that the softer interlayers may contain any crack-
ing within a single brittle layer. The danger is that
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Fig. 1. Schematic showing laminate of n=4 layers each with
thickness d bonded with compliant interlayer of thickness h, the
whole bonded in turn onto a compliant substrate, in contact with
sphere at load P at the top surface.

radial cracking may occur at a much lower critical
load in the undersurface of the top brittle layer, or
indeed in any one of the n–1 top layers, relative
to that in the undersurface of a monolayer of equiv-
alent net thickness D=nd. The paramount question
becomes: can we design the multilayer to avert this
danger, i.e. maintaining Pi�Pn (i=1, 2, … n–1),
thereby ensuring superior structural performance?

2.2. Experimental observations of radial crack
evolution

Simple multilayers were fabricated from stacks
of n=2, 3 and 4 soda-lime glass microscope slides
(Fischer Premium, Fischer Scientific, Pittsburgh,
PA), each of fixed thickness d=1.0 mm and surface
dimensions 75 mm × 25 mm. Undersurfaces of
selected slides in the multilayer sequences were
preabraded with 600 SiC grit to provide controlled
starting flaws for subsequent radial crack initiation
[1,2]. Independent four-point flexure tests on indi-
vidual abraded glass slides gave reproducible
strengths, σF=125±7 MPa. All other glass
undersurfaces were etched in hydrofluoric acid
(12% HF for 2 min), to minimize radial cracking
in other than specified layers. The top glass surface
was similarly etched, to minimize cone cracks.

Polycarbonate sheets of prescribed thicknesses
(Hyzod, AIN Plastics, Norfolk, VA) were inserted
between adjacent glass slides and bonded with a
thin layer of epoxy adhesive (Harcos Chemicals,
Bellesville, NJ) to form compliant interlayers of
net thicknesses h�d. (Because the adhesive has
similar mechanical properties to those of the poly-
carbonate sheet, the interlayers could be regarded
as effectively homogeneous through the thickness
h [1].) In some cases the polycarbonate sheets were
omitted, to produce very thin interlayers (h�10
µm). The same epoxy was used to bond the
resulting multilayers to thick (12.5 mm) polycar-
bonate substrates.

The specimens were indented with tungsten car-
bide (WC) spheres (J & L Industrial, Livonia, MI),
radius r=3.96 mm, mounted into the crosshead of
a testing machine (Instron Model 4501, Instron
Corp, Canton MA). Indentations were made at con-
stant crosshead speed 0.5 mm.min�1, in air. The
evolution of any radial (and/or cone) cracking in
the glass was observed through polished side walls
(or from below through the substrate) using an
optical zoom system (Optem, Santa Clara, CA)
mounted into a video camcorder (Canon XL1,
Canon, Lake Success, NY). Critical loads Pi for
radial fracture in any ith glass layer (i=1, 2, 3, …
n) were measured as a function of n and h. Several
indentation tests could be made on any one speci-
men surface.

A micrograph sequence for one specific multi-
layer system with n=4 layers, glass thickness d=1.0
mm and interlayer thickness h=280 µm, is shown
in Fig. 2. In this specimen all the glass undersur-
faces were preabraded, so as to reveal the suc-
cession of cracking through the multilayer at
increasing loads. Radial cracking appears first in
the top layer (Fig. 2a) at load P1�230 N, followed
by sequential cracking at P2�850 N (Fig. 2b),
P3�1320 N (Fig. 2c) and P4�1370 N (Fig. 2d).
In all layers the radial cracking was marked by a
distinct pop-in event. With increasing load, several
radial cracks developed in each layer (as confirmed
from subsurface viewing [1,2])—some of these
cracks are inclined to the plane of the figure, and
are not readily visible in the side views. (Note that
a cone crack has initiated between Fig. 2a and b,
suggesting that the contact itself may have intro-
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Fig. 2. Micrograph sequence for glass/polycarbonate laminate on polycarbonate substrates, d=1.0 mm, interlayer thickness h=280
µm, showing radial cracks in individual glass layers. Load sequence (a) P=230 N, (b) P=850 N, (c) P=1320 N, (d) P=1370 N. All
glass undersurfaces preabraded. (Note appearance of cone crack in the glass top layer in b.)

duced surface flaws into the etched glass top
surface.) The radial cracks remain confined within
each of the three top layers over the load range,
but penetrate through to the opposite surface in the
bottom layer. At this last stage the structure is at
the point of delamination at the weak interlayer
interfaces, and hence total failure. The damage tol-
erance is evident in the broad load range between
the first and last cracks, P4/P1�6.

Fig. 3 is a micrograph illustrating the response
in a comparative experiment with the same preab-
raded glass slides but with a much smaller inter-
layer thickness h=28 µm. Again, radial cracking
occurred first in the top layer, at P1�560 N, but
in this example virtually simultaneously in the
remaining layers, at P2�P3�P4�1400 N. Note
that the critical load P4�1400 N for cracking in

the bottom layer is similar in Figs. 2 and 3. Further
experiments with interlayer thicknesses down to
h�10 µm showed a similar sequence of events, but
with progressively increasing critical load P1 in the
top layer. In principle, we should ultimately expect
a reversal in the fracture sequence as h/d→0
(monolith limit), so that P1�P4. Although we were
unable to observe this load-reversal condition in
our multilayers, even down to the minimum achi-
evable epoxy interlayer thicknesses (h�3 µm), we
shall demonstrate below that circumstances can
exist where such a condition is indeed achievable.

2.3. Finite element analysis

Finite element analysis (FEA) was used to
evaluate stress distributions in the multilayer struc-
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Fig. 3. Same as Fig. 2, but interlayer thickness h=28 µm, load
P=1400 N. Radial cracking appeared first in glass layer 1 at
P=560 N, in remaining glass layers virtually simultaneously at
P=1400 N. (Again, note appearance of spurious cone crack.)

tures in axisymmetric contact loading. The algor-
ithm used here was analogous to that in preceding
studies on layer structures [1,5,20], except that the
computations were carried out with ANSYS
software (Version 5.4, ANSYS Inc., Cannonsburg,
PA). The system was configured to load a fric-
tionless WC sphere of specified radius r onto the
specimen top surface. All components in the struc-
ture were assumed to deform elastically, and the
interfaces were assumed to be well bonded. The
specimen radius was twice the total specimen
thickness. Grid spacings were refined until conver-
gence was attained in test runs, with more than 104

total elements and at least 40 through-thickness
elements in any one glass plate and six such
elements in the intervening layers.

Our interest lies primarily in the tensile stresses
at the bottom surface of the brittle layers, where
the radial cracks initiate. As an illustrative case
study, we choose a configuration pertinent to the
glass/polycarbonate system in Fig. 2, i.e. with rela-
tively thick interlayers. Input parameters are as fol-
lows: number of layers, n=4; glass layers—thick-
ness d=1.0 mm, Young’s modulus EC=70 GPa and
Poisson’ s ratio nc=0.22; polycarbonate substrate—
thickness 12.5 mm, Es=2.35 GPa and ns=0.41;
interlayers—thickness h=280 µm, Ei=2.35 GPa
and ni=0.41 (i.e. same as substrate); sphere, radius

r=3.96 mm, Ei=614 GPa and ni=0.22. A contour
plot of the hoop tensile stresses [1] is shown in
Fig. 4, using an intermediate contact load P=1000
N. The vital role of the interlayers in shielding the
lower layers by disrupting the stress distributions
is evident. In this example the relatively thick
interlayers (h/d=0.28) allow substantial flexure of
the overlying glass layers, evidenced by the flat-
tened contours in the lower layers, with resultant
high tensile stresses σi at the undersurfaces. In the
top surface of the first glass layer, flexure stresses
are dominated by local Hertzian contact stresses

Fig. 4. FEA contour plots for glass/polycarbonate laminates
on polycarbonate substrates showing hoop tensile stresses
(MPa) in multilayers from contact with sphere indenter at load
P=1000 N, for n=4. Adhesive interlayers of thickness h=280
µm, elastic parameters EI=2.35 GPa and ni=0.41. Other material
input parameters: sphere, r=0.5 mm, Ei=614 GPa and ni=0.22
(contact radius 0.44 mm, not shown); brittle layers, d=1.0 mm,
Ec=70 GPa and nc=0.22; substrate (thickness 12.5 mm, not
wholly shown), Es=2.35 GPa and ns=0.41. Contours in
increments of 15 MPa. (Only half-laminate shown. Stresses in
interlayers and substrate not shown.)
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(responsible for the cone cracks observed in Fig.
2). The magnitudes of the maximum undersurface
stresses follow the sequence σ1�σ2�σ3�σ4, con-
sistent with P1�P2�P3�P4 in Fig. 2.

Fig. 5 shows a comparative contour plot for the
same glass/polycarbonate system at the same con-
tact load P=1000 N but with relatively thin inter-
layers, h=28 µm, pertinent to Fig. 3. The level of
stress σ1 at the top layer undersurface is now much
less intense than in the corresponding layer in Fig.
4, attributable to substantially reduced plate flex-
ure. This translates into a higher predicted value
for P1, consistent with observations in Fig. 3 rela-
tive to Fig. 2. In the lower layers, the stress con-
tours become nearly continuous across the inter-
faces, indicating a much reduced shielding effect.
Again, this is consistent with the observed con-
dition P2�P3�P4 in Fig. 3. Note that the maximum
tensile stress σ4 at the lowest brittle undersurface
of Fig. 5 is approximately the same as in Fig. 4,

Fig. 5. Same as Fig. 4, but for adhesive interlayers of thick-
ness h=28 µm.

indicating that the upper interlayers do little to shi-
eld the tensile stress at the bottom of the multilayer
from the contact load.

3. Analysis of experimental critical load data

Using the experimental setup in Sect. 2.2., criti-
cal loads Pi for radial crack initiation in
glass/polycarbonate multilayers with n=1–4 layers
were measured in situ, for specimens with fixed
glass thickness d=1.0 mm and sphere radius r=3.96
mm, and for different interlayer thicknesses h. In
these experiments only one glass undersurface was
abraded in each specimen, so that the Pi values
could be determined independently. At least five
indentations were made at each condition, to deter-
mine means and standard deviation error bounds.
The FEA algorithm in Sect. 2.3. was then used to
validate the data trends, by incrementing the con-
tact load until the maximum tensile stress at the
appropriate ith glass undersurface equalled the
bulk strength σF=125 MPa of the abraded glass,
thereby identifying the critical loads Pi.

Fig. 6 shows critical load data Pi as function of
i (i=1, 2, … n; n=1, 2, 3, 4), for fixed h=280 µm.

Fig. 6. Critical loads Pi(i) for radial cracking in
glass/polycarbonate laminates on polycarbonate substrates, for
n=1–4, h=280 µm, d=1.0 mm, r=3.96 mm. Each ith glass
undersurface selectively preabraded. Data points are experi-
mental means and standard deviations, solid lines are FEA pre-
dictions, dashed line at n=1 is bilayer baseline.
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Solid lines are FEA predictions (note that only
integer values of i are allowable). In this system
P1�Pi for all i�1, consistent with dominant flex-
ure of the top glass layer on the immediate com-
pliant interlayer. The value of P1 for n�2 is some-
what higher than for n=1 (reference bilayer),
confirming a supportive role of the glass sublayers
[2]. Note, however, that the addition of layers
beyond n=2 has relatively little effect on P1, so
most of the support comes from the glass sublayer
i=2. For n=4, the critical loads follow the sequence
P1�P2�P3�P4, consistent with the trends in Figs.
2 and 3. Note also that the critical load P4=1400
N in Fig. 6 (only layer n=4 abraded) is similar to
that in Figs. 2 and 3 (all layers abraded), even
though cracking in the latter case occurred first in
the upper layers at much lower loads, suggesting
that the any fractures in the first layers do not seri-
ously degrade the final load bearing capacity of
the laminate.

Fig. 7 shows critical load data P1 for top layer
cracking as a function of interlayer thickness h, for
all model multilayers (n=1–4). Again, the solid
curves are FEA predictions. Values of P1 for multi-
layers (n�1) lie well above the bilayer baseline
(n=1) at 115 N, the more so at low h. (P1 for refer-

Fig. 7. Critical loads P1(h) for top layer radial cracking in
glass/polycarbonate laminates on polycarbonate substrates, for
n=1–4, d=1.0 mm, r=3.96 mm. Undersurface of top glass layer
preabraded. Data points are experimental means and standard
deviations, solid curves are FEA predictions, dashed line at n=1
is bilayer baseline.

ence bilayers is independent of h because of the
similarity in interlayer and substrate properties.)
Once more, the addition of layers beyond n=2 does
not substantially influence P1. All data converge to
the bilayer limit at h�d=1 mm, as may be
expected [2].

From these figures we may conclude that the
FEA algorithm is able to predict essential data
trends, within experimental scatter bounds.

4. Analytical relations for critical loads

Although FEA is ideally suited to determination
of stress distributions in complex multilayer struc-
tures, it is limited to case-by-case studies. Closed-
form analytical relations, where practical, are a
more powerful means of describing functional
dependencies of critical layer thickness and
material parameters. We establish such relations
here, in parts resorting to semi-empirical approxi-
mations in the interest of simplicity. Following our
description of the FEA computations in Sect. 2.3.,
we may expect the pertinent tensile stresses to be
comprised of a complex mixture of bulk laminate
and individual sublayer flexural stresses, plus near-
surface contact stresses. We defer detailed con-
sideration of these competing stress components to
an Appendix, focussing in this section on essential
results only.

First, establish a reference state by defining the
critical load PD for radial cracking in a monolithic
brittle coating of thickness D and Young’s modu-
lus Ec on an infinitely thick soft substrate of modu-
lus Es, corresponding to the condition where the
maximum flexural tensile stress at the coating
undersurface equals the strength σF of the material.
Solutions for the stresses in bilayer systems of this
kind may be obtained from the theory of thick
plates on elastic foundations [21]. In earlier studies
on such structures subjected to point-contact load-
ing [1,2,4] we made use of these solutions to derive
a critical load relation

PD � BsFD2 / log(CEc /Es) (1)

with dimensionless coefficients B=1.35 and C=1
[22]. Although it is implicit in Eq. (1) that the
stress field leading to Eq. (1) is essentially flexural
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(characteristic σ�P/D2 dependence), we may recall
from Figs. 4 and 5 that contact stresses will con-
tinue to dominate at and near the top surface.

Now consider a multilayer of n brittle layers of
modulus Ei and thickness d=D/n interspersed with
compliant interlayers of modulus Ei and thickness
h (Fig. 1). Generally, our goal is to determine rela-
tive critical applied loads P1, P2, ... Pn for any
given set of parameters—specifically n, h/d, Ei/Ec

and Es/Ec. However, because the tensile hoop
stresses responsible for radial cracking are
expected to have peak values in either the top or
bottom layers (depending on the laminate para-
meters—Sect. 2.3.), we focus in this section on
critical loads P1 and Pn. Noting our conclusion
from the FEA case studies in Figs. 4 and 5 that thin
soft interlayers are unlikely to have much effect on
the stress state at the undersurface of the nth layer,
the critical load for this layer may reasonably be
approximated by

Pn � PD (2)

Determination of P1 is less straightforward. In
analogy to Eq. (1), define a quantity Pd for a single
brittle layer of thickness d and modulus Ec on an
infinitely thick substrate of compliant interlayer of
modulus Ei

Pd � BsFd2 / log(CEc /Ei) (3)

In laminates, the thickness h of the interlayer is
finite, with at least one brittle support layer of
thickness d beneath, reducing flexure of the first
layer—thus, P1 must generally be somewhat higher
than Pd. The functional dependence of P1 on h/d
for an analogous system with top glass plate and
underlying interlayer, but on an infinitely thick
brittle support layer, has been empirically determ-
ined to be of the form [2]

P1 /Pd � f1 � 1 � b(d /h)g (4)

where b and g are data-adjusted coefficients for a
given material system (Appendix). (Note that P1

reduces to Pd in the limit h��d, as required.) This
dependence may be anticipated to remain a reason-
able approximation in the uppermost layers of
laminate structures, especially when n is large.
Strictly, we may expect f1 to depend modestly on
modulus ratios as well, i.e. f1 �

f1(h /d,Ec /Ei,Ec /Es), but we ignore such compli-
cations here. Combining Eqs. (1)–(4), we obtain
the following expression

P1 /PD � (1 /n2)[1 (5)

� b(d /h)g][log(CEc /Es) / log(CEc /Ei)

Eq. (5) conveniently separates the influence of
number of layers, thickness ratio, and modulus
ratios.

As demonstrated in the Appendix, incorporation
of contact and bulk laminate flexure terms in the
stress analysis allows for the determination of a
more accurate (but unwieldy) relation for P1/PD

than Eq. (5), especially for small n and h/d and
Ei/Ec approaching unity. Analogous (unwieldy)
relations for critical loads Pi/PD in the intermediate
layers (i=2, 3, ... ,n) are similarly determined in
the Appendix.

In terms of the above analytical relations, the
optimum condition for success of the multilayer is
that P1/Pn�1.

5. Predictions for selected multilayer systems

We are now in a position to test the validity of
the closed-form solutions derived in the preceding
section. To do this we compare with FEA-gener-
ated data for hypothetical multilayer systems, mak-
ing use of the algorithm described in Sect. 2.3. We
retain some input parameters pertinent to the
experimental systems in Sect. 3.: brittle glass lay-
ers, thickness d=1.0 mm, elastic constants Ec=70
GPa and nc=0.22; polycarbonate substrates,
Es=2.35 GPa and ns=0.41. Other parameters are
allowed to vary: bonding interlayers, thickness h
and modulus Ei (but fixed ni=0.25). Also, we now
consider a WC indenting sphere of small radius
r=0.5 mm, to approximate more closely the point-
load contact conditions inherent in Eq. (5). Analy-
sis is carried out for up to n=10 layers. In the
examples below (Figs. 8–11), data points are FEA
calculations, solid curves are from Eq. (5), and
dashed curves are from the more accurate relation
Eq. A5 in the Appendix (recalling that only integer
values of n are meaningful in these functional
predictions).
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Fig. 8. Critical loads Pi/PD, as function of number of layers
n, for given multilayer system (h/d=0.070, Ei/Ec=0.20,
Es/Ec=0.033). Data points are FEA predictions. Dashed curves
are best fits to data for all Pi/PD, from Eq. A5. Solid line is
asymptotic limit to P1/PD data from Eq. (5).

Fig. 9. Critical loads P1/PD as function of relative interlayer
thickness h/d, for values of n indicated (Ei/Ec=0.20,
Es/Ec=0.033). Data points are FEA predictions. Dashed curves
are best fits to data using Eq. A5, solid curves are evaluations
from Eq. (5).

To investigate the role of number of layers, con-
sider a laminate with n interlayers of modulus
Ei=14 GPa (Ei/Ec=0.20) and thickness h=70 µm
(h/d=0.070), bonded to the prescribed substrate

Fig. 10. Critical loads P1/PD as function of relative interlayer
modulus Ei/Ec, for values of n indicated (h/d=0.070,
Es/Ec=0.033). Data points are FEA predictions. Solid curves are
predictions from Eq. (5), dashed curves are more accurate pre-
dictions from Eq. A5.

Fig. 11. Critical loads P1/PD as function of relative substrate
modulus Es/Ec, for values of n indicated (h/d=0.070,
Ei/Ec=0.20). Data points are FEA predictions. Solid curves are
predictions from Eq. (5), dashed curves are more accurate pre-
dictions from Eq. A5.

material (Es/Ec=0.033). Fig. 8 plots relative critical
loads P1/PD to produce cracks in each ith layer (i=1,
2, 3, ... n) as a function of n. Our primary interest
is in the P1/PD function for top layer radial crack-
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ing (i=1). In this plot, the FEA data for P1(n) are
best-fitted to Eq. A5 (dashed curves), yielding
f1=2.68. At large n, the FEA data tend asymptoti-
cally to the predicted n2 dependence in Eq. (5)
(solid line). At small n, the P1 data show increasing
deviation from this dependence, with limiting
value close to unity at n=1 (monolith).

Also included in Fig. 8 are FEA data for P1/PD

(i=2, 3, 4, ...) and corresponding functional fits to
Eq. A5 from the Appendix (dashed curves). For
any given n (except the special case n=2), the criti-
cal load P1 is lower than all P2, P3, P4 ..., con-
firming the dominance of top layer fracture for this
particular multilayer configuration. Note that the
FEA data points for Pn/PD (i=n) lie close to unity,
in accordance with Eq. (2). This confirms that the
critical load at the multilaminate undersurface is
not strongly dependent on the presence of interven-
ing adhesive layers (at least not for the relatively
small h/d=0.070 used here), i.e. the bulk laminate
behaves as an equivalent monolith of thickness
D=nd.

Fig. 9 shows the effect of relative adhesive
thickness h/d on top layer critical load P1/PD, for
various n, for fixed modulus ratios (Ei/Ec=0.20,
Es/Ec=0.033). Best fits of Eq. A5 to the FEA data
yield parameters b=0.18 and g=0.84 in Eq. (4)
(consistent with f1=2.68 from the calibration in Fig.
8). For any given n, P1/PD decreases monotonically
with h/d, demonstrating the increasing facility for
top-layer flexure with increasing interlayer thick-
ness. The falloff in P1/P with n from curve to curve
is consistent with the n2 dependence in Eq. (5).
Note that predictions from the simplistic Eq. (5)
(solid curves) are able to describe broader trends
in the FEA data, but show marked deviations in
the regions of small h/d and n—whereas Eq. (5)
predicts P1/PD→� as h→0, Eq. A5 predicts finite
limits, in accordance with the FEA data. These lat-
ter deviations are attributable to the dominance of
top layer contact stresses (Appendix), neglected in
Eq. (5).

Fig. 10 shows the effect of interlayer modulus
mismatch Ei/Ec on P1/PD for various n, for fixed
relative interlayer thickness and substrate modulus
(h/d=0.070, Es/Ec=0.033), now using the calibrated
b and g values from Fig. 9 to generate the curves.
For any given n, P1/PD increases monotonically

with Ei/Ec, with increasing rapidity at Ei/Ec→1
(monolith limit). This plot demonstrates the
enhancing influence of a more compliant interlayer
(lower Ei/Ec) on radial cracking. Once more, the
falloff in P1/PD values from curve to curve reflects
the n2 dependence in Eq. (5); and better fits to the
FEA data are obtained with Eq. A5 (dashed curve)
than with Eq. (5) (solid line), most noticeably in
the regions of large Ei/Ec.

Fig. 11 shows the effect of substrate modulus
mismatch Es/Ec on P1/PD for various n, and for
fixed relative interlayer thickness and interlayer
modulus (h/d=0.070, Ei/Ec=0.20), again using the
calibrated values of b and g. For a given n, P1/PD

decreases monotonically with Es/Ec, with rapid fal-
loff at Es/Ec→1 (monolith limit). In this case, a
stiffer substrate (higher Es/Ec) diminishes the rela-
tive critical load for radial cracking, because PD in
Eq. (1) tends to infinity. The same curve-to-curve
n�2 dependence in Eq. (5) is yet again apparent;
and the dashed curves once more provide better
approximations to the FEA data.

As foreshadowed at the end of the last section,
one feature of the results in Figs. 8–11 bears spe-
cial consideration. Certain configurations exist that
satisfy the requirement P1/Pn�1 for multilayers to
outperform their monolithic counterparts. We can
determine these configurations from the results in
such figures and thence construct design maps for
specified systems. By way of illustration, suppose
that we are asked to assemble a multilayer system
from given glass layers and polycarbonate sub-
strates (Es/Ec=0.033), but that we are free to choose
the bonding interlayer material. What combi-
nations of modulus and thickness will provide opti-
mum resistance to the incidence of fracture? Fig.
12 plots (Ei /Ec)∗ as a function of (h/d), for several
n, with the asterisk corresponding to the optimal
condition P1/Pn=1. Individual points are interp-
olations from FEA data such as those in Figs. 9
and 10, solid curves are corresponding predictions
from Eq. (5), dashed curves from Eq. A5. There
are some deviations between the predicted curves
and FEA points at small Ei/Ec (cf. Fig. 10), high-
lighting the dangers of extrapolating beyond the
data range. For safe operation, it is necessary to
remain above these curves. The combinations of
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Fig. 12. Design diagram, showing optimal values (Ei/Ec)∗ as
a function of (h/d)∗, for values of n indicated (Ei/Ec=0.033).
Points are FEA data (interpolated from plots such as Figs. 9
and 10 at P1/PD=1), curves are corresponding predictions from
Eq. (5) (solid) and Eq. A5 (dashed). To avoid premature radial
cracking in upper layer, it is necessary to remain above these
curves.

variables required to satisfy this condition may be
readily determined from such design diagrams.

6. Discussion

We have investigated the conditions for fracture
in laminates of brittle plates with compliant inter-
layers bonded to compliant substrates. Simple con-
tact experiments on model glass/polycarbonate
multilayer systems have been used to observe rad-
ial cracking at the brittle layer undersurfaces, and
to measure corresponding critical loads for
initiation. Generally, we find that cracking initiates
first in either the top or bottom layer, depending
on laminate modulus and thickness parameters. At
first initiation, the cracks remain contained within
individual layers until, at much higher loads, crack-
ing occurs in all layers and system failure ensues.
Spurious cone cracks may also occur at the lami-
nate top surface, but these are considered unlikely
to penetrate into the sublayers (except perhaps in
very thin brittle plates), and are consequently of
secondary importance.

Basic fracture mechanics relations have been
derived to account for the critical loads for radial
cracking in n-layer laminates of brittle layer thick-
ness d and interlayer thickness h, with special
attention to top- and bottom-layer loads P1 and Pn.
A central premise of the derivations is that the
brittle layers flex on their soft interlayer and sub-
strate supports, much as plates on elastic foun-
dations in concentrated loading—the flexure gener-
ates undersurface tensile stresses which, in turn,
generate radial cracks. This premise is best satis-
fied when n and h/d are large and the modulus ratio
Ei/Ec is small. The load Pn is well approximated by
PD for a monolithic coating of equivalent thickness
D=nd, Eq. (2). For load P1, an explicit but approxi-
mate and semi-empirical relation is determined,
Eq. (5). A simplifying feature of Eq. (5) is that the
principal variable dependencies appear as separ-
able terms: for number of layers, as n�2; for inter-
layer thickness, as a power-law term in h/d; for
modulus dependence, as logarithmic terms in Ei/Ec,
and Es/Ec. A more accurate determination of P1, in
which the stresses in the multilayer are broken
down in terms of superposed bulk laminate and
individual sublayer flexural components plus a
near-surface contact component, provides a more
accurate (but unwieldy, interactive) relation
(Appendix, Eq. A5). These relations are able to
account for all the important trends in indepen-
dently generated FEA data for selected hypotheti-
cal multilayer systems in Figs. 8–11, although Eq.
(5) becomes inaccurate in limiting regions (small
n and h/d, Ei/Ec close to unity). Implicit in the P1

relations, dependent as they are on dimensionless
quantities (n, h/d, Ei/Ec and Es/Ec), is a certain geo-
metrical similarity, which holds only as long as the
stresses in the system remain proportional to the
applied load. Strictly, such linearity can only be
realized in the limit of point contact (Boussinesq)
loading, where the contact radius remains an insig-
nificant fraction of the layer thickness d.

The fracture mechanics relations provide a
sound basis for optimizing the design of brittle
multilayer structures, by imposing a condition that
radial cracking in the top layer occurs at a higher
load than in the bottom layer, i.e. by ensuring
P1/Pn�1. An example of a design diagram con-
structed on this basis was given in Fig. 12. Such
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diagrams map out conditions under which the sus-
ceptibility to radial cracking of a multilayer system
just equals that of an equivalent monolith. The
requisites for falling within a safe domain for any
given n is that h/d be kept sufficiently small and
Ei/Ec sufficiently large—yet not to the extent that
the multilayer begins to behave as a monolith, such
that cracks are able to traverse the soft interlayers
[18]. Ideally, therefore, one should design the sys-
tem so as to lie as close as possible to the curves
in Fig. 12.

In this study we have considered just layers and
interlayers of the same kind and thickness, in the
interest of simplicity. Other, more complex alterna-
tives might be contemplated, in order to increase
P1 relative to PD. For example, one might consider
“strengthening” the top layer, e.g. by increasing the
quantities d1 or E1, or decreasing h1, relative to
their sublayer counterparts. Again, it is important
not to overdo any such strategy, in order that the
damage tolerance properties of the multilayer not
be compromised.
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Appendix. More detailed fracture mechanics
analysis

Consider a laminate of brittle ceramic layers of
Young’s modulus Ec with thin intervening com-
pliant interlayers of modulus Ei, the whole bonded
to a compliant substrate of modulus Es, subject to
a point-force load P at the top surface. Define a
coordinate zi along the contact axis locating the
undersurface center of the ith brittle layer. The net
hoop stress at any such location may be approxi-
mated as the sum of three terms:

si � (1�2nc)P /4pz2
i � (2zi /D�1)s0 (A1)

� [(P /Bfiz2
i ]log(CEc /Ei), (0	zi	D).

(i) Contact load. The first term represents an
inverse-square Boussinesq point-force field (nc

Poisson’ s ratio) [23]. (ii) Laminate flexure. The
second term represents flexure of the composite
laminate on the substrate. This term is assumed to
have a customary linear profile across the laminate
section, with σ0 the maximum value at z=0 and D.
(iii) Layer flexure. The third term represents flexure
of any individual brittle layer i on the compliant
interlayer immediately beneath it. This term is
obtained by rearranging Eqs. (3) and (4) in the text
(replacing d by zi), with fi some function of i. It is
implicit in Eq. A1 that the bulk of the load is sup-
ported by the stiff brittle layers, and that superpo-
sition of any one component does not distort the
others.

The stress at the bulk laminate undersurface may
be determined from the theory of plates on elastic
foundations to be of the form [21]

sD � Plog(CEc /Es) /BD2 (A2)

(which reduces to Eq. (1) in the text at σD=σF,
P=PD). Inserting σi=σD at z=D as a boundary con-
dition in Eq. A1 and defining zi=id =iD/n, we may
eliminate σ0 to obtain

si � (P /BD2)(n / i)2{(1�2nc)B(1�m) /4p

� mlog(CEc /Es) � (1 / fi (A3)

�m / fn)log(CEc /Ei)}, (1	i	n)

where fI=fn at i=n and

m � (i /n)2(2i /n�1) (A4)

Note limiting values µ=1 at i=n, µ→0 at i��n.
The relative critical load analogous to Eq. (5) in

the text is obtained by combining Eq. A3 with A2:

Pi /PD � (i /n)2log(CEc /Es) /{(1�2nc)B(1

�m) / 4p � mlog(CEc /Es) � (1 / fi (A5)

�m / fn)log(CEc /Ei)}, (1	i	n)

This equation reduces to Eq. (5) in the text at i=1
in the limit n��1, Ei/Ec��1. The term fi can be
adjusted to match FEA-generated Pi/PD data. In
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Fig. 13. Plot of tensile hoop stresses σ/σD as function of z/h
along point-contact axis. Showing contributions to combined
net stress from bulk laminate flexure, individual layer flexure
(integer i only), and contact (r=0.5 mm). Calculations for n=6,
h/d=0.070, Ei/Ec=0.20, and Es/Ec=0.033. Local layer flexure
term dominates in top layer, laminate flexure term dominates
in bottom layer.

conjunction with the definition of fi in Eq. (4), it
is found that the empirical relation

fi � f1i0.67 (A6)

provides a reasonable fit to the data in Fig. 8.
Fig. 13 plots each of the terms in Eq. A3, for a

glass/polycarbonate system with n=6 layers. The
local flexure term dominates at i��n, the bulk
flexure term at i→n. The Boussinesq term becomes
important relative to the local flexure term when
h/d→0. Radial cracking occurs in layer i when σi

equals the bulk strength σF of the brittle layer
material.
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